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A Biomimetic Synthesis of the 
Camptothecin Chromophore 

Summary: Novel heterocyclic alkaloids (4 and 6),  potential 
synthetic precursors of 20(S)-camptothecin (2), are synthe- 
sized by 2,3-dichloro-5,6-dicyanobenzoquinone oxidation of 
tetraacetyl -18,lS-dihydrovincoside (18,19-HZ-la) and -is0 - 
vincoside ( 18,19-H2-lcj lactams and their corresponding 
pentaacetyl-18,19-dihydroquinolols (18,19-H2-3). 

Sir: We have been studying the chemistry1 of the penultimate 
biosynthetic precursor of camptothecin (2), isovincoside 
lactam (IC), as a model system for the putative biochemical 
transformations that occur between IC and 2 in vivo.2 Since 
D ring oxidation of IC to a pyridone may be one requisite of 
the biosynthetic pathway to 2, we have examined the oxida- 
tion of 18,19-&-1a and -IC using 2,3-dichloro-5,6-dicyano- 
benzoquinone (DDQ). Alternatively, D ring oxidation of iso- 
vincoside quinolol(3c) may be a key oxidative step preceding 
2 in vivo, since presently we do not know the exact biochemical 
sequence of events between IC and X3 With both 1 and 3 ox- 
idation with DDQ has been accomplished efficiently, which 
should enable a convenient synthesis of 2 and novel indole 
analogues of it, and which may be relevant to in vivo biosyn- 
thetic events.41 

Oxidation of either 18,19-Hz-lb or -Id (OAc)4 with DDQ (1 equiv 
or excess) in methanol (reflux, 5 min, Nz) or in a toluene-methanol 
mixture (25 "C, 5-10 min, Nz) gave a chromatographically resolvable 
mixture of 4a {pale yellow solid mp 145-150 "C dec; 41%; ir V K B ~  3356 
(NH), 1761 (OAc), 1667 (pyridone), and 1230 ((2-0) cm-l; uv A$::" 
386, 367, 296 (sh), 286 (sh), 273, 260, 252, and 213 nm; MS mle 
666.2437 (Ma+ -- CH20, calcd for C ~ ~ H ~ ~ N Z O ~ Z  666.2424), 331.1026 
[Glu(OAc)d+, calcd for C14H1909 331.10241; IH NMR (90 MHz) P C L 3  

0.93 [t, 3 H, J = 7 Hz, C(18)], 1.89 [m, 2 H, C(19)], 2.00-2.07 (4 s,12 
H, 4 OAc), 2.58 [m, 1 H, C(20)], 2.95 [t, 2 H , J  = 7 Hz, C(6)], 3.56 (s, 

5.70 [s, 1 H, C(17)], 6.32 (s, 1 H, C(14)], 7.08-7.54 (4 aromatic H), and 
9.51 (brs, NH), glucosyl protons omitted) and 4b (yellow needles 
(MeOH); mp 154-156.5"C; 26.5%; ir U K B ~  3333 (NH), 1754 (OAc), 1658 
(pyridone), and I230 (C-0) crn-l; uv A ~ ~ " 4 1 8 ,  395 (sh), 324,277,257, 
248 (sh), and 218 nm; MS mle, 664.1897 (Ma+ - CH20, calcd for 
C34H36Nz01z 664.2258), 316.1153 [Ma+ + 1 - CH30 - (HO- 
(Glu(OAc)c, calcd for CzoH16N20~ 316.10273, and 290.1419 (calcd for 

1.90 [m, 2 H, C(19)], 1.96-2.07 (4 s, 12 H, 4 OAc), 2.90 [m, 1 H, C(20)], 

3 H, OCHz), 4.35 [t, 2 H, J = 7 Hz, C(5)], 5.41 (d, 1 H, J = 3 Hz, C(2l)], 

C1gHlsNzO); 'H NMR (90 MHz) P C ' 3  1.02 [t, 3 H, J = 7 Hz, C(lS)], 
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3.66 ( ~ , 3  H, OCH3), 5.49 [d, 1 H, J = 3 Hz, C(2l)], 5.94 [s, 1 H, C(17)], 
6.76 (s, 1 H, C(14)], 6.81 [d, 1 H, J = 6 Hz, C(6)], 7.20-7.80 (4 aromatic 
H), 8.70 [d, 1 H, J = 6 Hz, C(5)], and 9.50 (br s, NH), glucosyl protons 
omitted). The E1 high resolution MS data for 4a and 4b are not so 
accurate as would be desirable; however, (1) the exact masses for the 
corresponding ions of 18,19-dehydro-4a and -4b agreed well with the 
calculated values: and (2) when the oxidation was done in MeOD, 
ions at  mle 699,696, and 666 were seen for one isolable product, which 
must correspond to [16-2H]-15,16-Hz-4a (5).6 The structures assigned 
to 4a and 4b were confirmed by 13C NMR analysis (Table I) and 4a 
was convertible quantitatively to 4b by further DDQ oxidation 
(benzene, 25 "C, 5 min). 

When the oxidation of 18,19-Hz-ld was done in benzene (reflux, 
Nz, 30 min), several blue fluorescent products were produced (TLC); 
the principal one (-25% yield) appeared to be 7 [uv (MeOH) identical 
with that of 4b; IH NMR resonances characteristic for hydrogens at  
C(5), C(6), and C(18)-C(21); MS mle 664 (M+)]. Interestingly, when 
7 was obtained (in low yield) from oxidation of 18,19-H~-ld with DDQ 

hr-7f-l \ 

%0 Oglu(OAc), 

7 

in MeOD, it did not contain 2H suggesting that an intramolecular 
hydrogen migration had occurred to generate the C(17) meth- 
ylene.6 

The analogous oxidation of 3b or 3d (benzene, reflux, 20 h) gave the 
interesting dimer, 6 (pale yellow needles from C H C ~ S - C H ~ C ~ ~ M ~ O H ,  
mp 160 "C dec; 7396; ir Y K B ~  1761 (acetate), 1667 (pyridone), and 1230 
(C-0) cm-'; uv 385,367,335 (sh), 290,253, and 245 nm; MS rnle 
678 (M dimer - CH&O), and 330.0986 [Ih dimer - CH3CO - (HO) 
glu(OAC)4; calcd for C20H14N203 330.1001]; lH NMR (270 MHz) 
6CDC13 0.95 [t, J = 7 Hz,'3 H,C(18)], 1.90 [m, 2 H,'C(19)], 2.03-2.09 (8 
s, 24 H, 8 OAc), 2.51 [s, 3 H, C(7) OAc], 2.91 [m, 1 H, C(20)], 5.18 [s, 
2 H, C(5)], 5.89 [d, 1 H, C(21)], 6.45 [d, 1 H, C(17)], 7.24 [s, 1 H, C(14)], 
7.60-8.15 (4 aromatic H), glucosyl protons omittedl. Anal. Calcd for 
C72H74N402gCHC13: C, 56.11; H,  4.84; N, 3.59. Found: C, 56.34; H, 
4.80; N, 3.52. Although the foregoing data, except for the observation 
of eight distinct acetate methyl resonances, could be interpreted as 
evidence for a monomeric structure, the dimeric nature of 6 was 
confirmed by the following data. (1) A molecular weight analysis 
(vapor pressure osmometry) gave 1390 as the true molecular weight 
(calcd 1443). (2) The I3C NMR signal of C(17) a t  6 89.7 (Table I) ap- 
peared primarily as a doublet on SFOR proton decoupling with Z J c ~  
fine structure indicative of an ABX spin system, which is evidence 
for the subunit, -CO(H)-(H)OC-.9 No 13C NMR signal corresponding 
to a C(17) methylene was present, and the 13C NMR assignments of 
the aromatic carbons of 6 were nearly identical with those of 2.2 (3) 
The CD spectrum (c 0.056 mg/ml, dioxane) of 6 { [8]450 0, [8]376 - 2.39 

lo5, and - [8]255 O } ,  when compared with that of the 21(R) 21-OMe 
acetal of which has only a very weak (-) cotton effect between 450 
and 350 nm, is good evidence for the presence of a substituent a t  C(17) 
giving an S absolute stereochemistry.'l 

x 105, [0]358 - 1.24 x 105, [8]3510, + 5.60 x 104, [e]331 + 7.14 x 

The relative ease and efficiency of the oxidation of 1 and 
3, which also occurs on standing in the air, may be significant 
in the biosynthesis of 2. Nevertheless, the preparation of 6 
from tryptamine and secologanin in 36% overall yield should 
enable a high-yielding synthesis of 2 as well as novel hetero- 
cyclic analogs of it.12 
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An Annelation Approach to the Eudesmane and 
Certain Elemane Sesquiterpenes 

Summary. A potentially general route to eudesmane and 
certain elemane sesquiterpenes is demonstrated by synthesis 
of diene-lactone 9. 

Sir: We wish to describe what we consider to be a potentially 
general route to the eudesmanel and certain elemane ses- 
quiterpenes, here illustrated by alanolactone (1) and ver- Wo oJp+o 

CH, IbH 
1 2 

nomenin (2),2 respectively. Our approach (eq l), features the 
1,6-annelation reagent a-carbomethoxy-0-methyl-y-methy- 
lidene- Aav@-butenolide (3), which incorporates the structural 
components of the y-lactone (and furan) rings characteristic 
of these  sesquiterpene^.^ 

3 
An exceedingly simple and high yield preparation of the 

required butenolide from equivalent amounts of biacetyl and 
malonic acid has been developed (80% overall yield, eq 2).4 
Although biacetyl has been reported to undergo multiple 
condensation with aldehydes in low to negligible yields using 
Knoevenagel conditions,5 to our knowledge no successful re- 


